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Abstract. We develop a new theory of gelation which takes into account (i) delay of the gel point and
(ii) change of functionality due to ring formation. We show that the problem of finding the gel point in
real polymer solutions reduces to the problem of calculating the total ring concentration and the extent of
reaction of intermolecular reaction at the gel point. In this paper, we solve a special case of this problem, on
the basis of the independence assumption between intermolecular reaction and cyclization which takes into
account only (i) the delay of the gel point: making use of the asymptotic equality of the total ring concen-
tration, we acquire an approximate solution for the gel point Dc as a function of the inverse concentration
γ, the relative frequency ϕj of cyclization and dimension d. Applying the observed values of ϕj in linear
polyesters, the theoretical result reproduces well the Wile and the Gordon-Scantlebury observations, show-
ing the existence of a critical dilution γc beyond which gelation can not occur, and an asymptote γasy. As
the classical gel point is approached, the present theory reduces to the linear equation, which makes one-to-

one correspondence with the real slope ∆, suggesting the inequality ∆ ≥
f
∑
j ϕj/2j

g(f−g) , (R-Ag+R-Bf-g model)

which is just what polymer chemists have quested for so far, with the physical meaning having remained
unknown.

PACS. 36.20.-r Macromolecules and polymer molecules

1 Introduction

Recently a very unique gel theory [1] appeared in statis-
tical physics, where only rings play the role of monomer
units, soft linkages (catenation) between ring molecules
being formed progressively to a macroscopic cluster called
Olympic gel. Making use of the power of the tree diagram,
Raphael, Gay and de Gennes were able to estimate the gel
point as a function of concentration. It is just this concen-
tration dependence of the gel point that we discuss in this
paper with regard to the traditional branching process
where intermolecular reaction competes with cyclization.

There has not been a theory which predicts the gel
point in real polymer solutions. To seek the gel point in
real branching processes, it is necessary for us to take
cyclization reaction into consideration which has been
thought to be an essential part of the deviation [2] from the
prediction of the classical theory of gelation. No one has
known, however, the way of unifying the classical theories
of gelation and the theories of cyclization. To overcome
such situation, we here develop a new theory of gelation
from a different point of view, taking into account (i) de-
lay of the gel point, and (ii) change of functionality, due
to cyclization, with the assumption of equireactivity being
made for all functional units (FU’s) of the same type. We
then introduce a fundamental equality of the gel point.
We solve a special case of the equality, based on the in-
dependence assumption between intermolecular reaction

and cyclization. The theoretical results are examined in
the light of the Wile and the Gordon-Scantlebury experi-
ments.

While it has been recognized earlier that the gel point
is in close correlation with the amount of rings and the
comprehension about ring formation has much progressed
so far, the theoretical treatment of cyclization for multi-
functional systems has been scarce. Gordon, Dusek, and
coworkers [3] introduced the spanning tree approximation
into the cascade process formalism [4]. Hoeve [5] gener-
alized the Jacobson-Stockmayer treatment [6] to include
rings in the R-Af polymer. Spouge [7] was the first to
introduce the exact ring distribution functions into the
branching process formalism. None of these approaches,
however, has afforded analytic solutions of the gel point.

This paper deals with a straightforward extension of
the previous work by the author [8], through the series
expansion of the ring distribution functions in union with
the classical picture of gelation.

2 Theory of gel point

There are conceivable two major effects, associated with
cyclization reaction, which render the gel point shift. (i)
One is simple delay of the gel point caused by cycliza-
tion, since branched molecules can grow only through
intermolecular reaction. (ii) The other is the change
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Fig. 1. Model reaction for the typical branching process of the
R-Ag + R-Bf-g model. (•): A-type monomer unit;(◦): B-type
monomer unit. In this case, g = 3, f − g = 4, M0 = 4, N0 =
3 and κ = 1.

of functionality: once a functional unit (FU) on a branch-
ing unit is occupied by a cyclic bond, the functionality
of the branching unit decreases exactly by the number of
cyclic bonds.

We then inquire the question, “where is the gel point
Dc predicted by the theory which takes into account all
these effects ?” to answer this question, let us consider
the branching system which has the original components
of the type R-Ag + R-Bf-g. This general system is defined
by the statement that the type R-Ag molecules consist
of M0 monomer units bearing g functionalities, together
with N0 monomer units of f -g functionalities of the type
R-Bf-g; the A FU can react only with the B FU and vice
versa (see Fig. 1).

Let D(inter) be the extent of reaction for A FU’s
which undergo intermolecular reaction alone, and D(ring)
be the corresponding quantity for cyclization. Note that
the critical extent of reaction, Dc, of gelation for A FU’s
is separable

Dc = D(inter) +D(ring). (1)

To express D(ring) analytically, we refer to the imagi-
nary reaction in Figure 1 where three branched molecules
are arranged (two monomers and one pentamer): On the
largest molecule, one cyclic bond (dotted line) is formed.
Including this cyclic bond, the four AB bonds compose
the ring. Now cut anyone of these four bonds and the re-
sultant molecule is simply a tree molecule without rings.
It turns out that only one bond has been wasted by the
cyclization, the other three bonds assisting the growth of
the branching molecule. It is shown in general that only
one bond is wasted every cyclization, irrespective of the
size of rings. Bearing in mind that D(ring) is equivalent
to the fraction of these excess bonds wasted through cy-
clization reaction, one has

D(ring) = Γ/gM0

with Γ being the total number of rings at the gel point.
Using the mole ratio of the respective FU, κ = (f − g)
N0/gM0, and the reciprocal γ of the initial monomer con-
centration, we rewrite the above equation to get:

D(ring) =
f − (1− κ)g

g(f − g)
[Γ ]γ, (2)

with the symbol [ ] signifying the concentration, so that
[Γ ] = Γ/V expressing the number concentration of rings.
Here we have made use of the general definition of the
initial monomer concentration C = (M0 +N0)/V (≡ 1/γ)
in place of the previous definition [8] C = M0/V .

Then we seek analytic expression of D(inter). For
this purpose, consider the general case of a mixing sys-
tem with different functionalities of the types R-Agi +
R-B(f-g)j (i, j = 1, 2, 3, ...), each having gi and (f -g)j FU,
and Mi and Nj branching units, respectively; e.g., {gi} =
{1, 2, ...}. Here M0 =

∑
iMi and N0 =

∑
j Nj. A central

idea is that the distribution of functionalities is caused by
cyclic bonds which prevent FU’s from forming intermolec-
ular bonds. Consider an m-tree which has m unreacted A
FU’s in the first generation. Let N(A)j be the number of
A functional units in the jth generation. In equilibrium,
N(A)j may satisfy the recurrence relation of the form:

N(A)j = [(〈g〉 − 1)(〈f − g〉 − 1)DADB]N(A)j−1. (3)

where the subscripts A and B denote the quantity for
the A and the B FU, respectively; 〈g〉 =

∑
k=1

χgkgk and
χgk signifies the fraction of gk, χgt = gkMk/

∑
k
gkMk.

Thus 〈· · · 〉 expresses the weight average of functionalities
which undergo intermolecular reaction. The solution for
equation (3) is [8]

N(A)j = [(〈g〉 − 1)(〈f − g〉)− 1)DADB]j−2N(A)2. (3’)

The gel point is a point when an infinitely large cluster
emerges, where the sum

∑
j N(A)j must diverge, giving

the critical condition in the mixing system of the equimo-
lar case κ = 1:

D(inter) =

√
1

(〈g〉 − 1)(〈f − g〉 − 1)
·

Generalizing the concept of the mixing system to include
cyclization, and substituting into equation (1), we arrive
at the fundamental equality:√

1

(〈g〉 − 1)(〈f − g〉 − 1)
= Dc −

f [Γ ]

g(f − g)
γ, (4)

Now the problem of finding the gel point in real poly-
mer solutions reduces to the problem of solving the equal-
ity (4). The gel point is therefore calculable by means of
the weight average functionality and the total ring con-
centration at the gel point. In this paper, we show a
special solution of this equality (4), based on the inde-
pendence assumption between intermolecular reaction and
cyclization.
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2.1 Special solution: Independence model

The independence model is the most primitive paradigm
which was introduced in the previous paper, giving an ex-
plicit solution, where one introduces Assumption I: The
critical extent of reaction shifts upward exactly by the
number of transitions for cyclization.

The terminology, transition, stands for a micro-
scopic process in which an unreacted FU jumps to
form a bond [8]. Since a branching process must de-
velop through either intermolecular reaction or cy-
clization, the number of transitions for cyclization
can be equated with the number of rings. Mathe-
matically, Assumption I is equivalent to state that
intermolecular reaction takes place independently with-
out interference by ring formation. Hence, it follows that
cyclization causes (i) the delay of the gel point, but not
(ii) the change of functionality.

One way of rationalizing Assumption I is to take notice
that cyclization reaction is subordinate to intermolecular
reaction: Consider an initial stage in the R-Ag + R-Bf-g

branching reaction, then pay attention to an A-type func-
tional unit (FU) on a randomly chosen R-Ag branching
unit. The reaction must commence with intermolecular
bonding, because the A FU can react only with a B FU
(Fig. 1). In order for the A FU to undergo cyclization, it
is essential for the FU to belong to a cluster greater than
dimer; hence, the branching unit bearing the FU in ques-
tion must possess more than one intermolecular bond in
advance. Since, as discussed above (the 4th paragraph in
Sect. 2), a ring contains only one cyclic bond (the others
deriving from intermolecular reaction), the mean fraction
of intermolecular bonds within a ring increases with in-
creasing size of the ring. Cyclization reaction is thus es-
sentially secondary in bond formation. This implies that
the change of functionality is not of primary importance
in respect to the shift of Dc.

Let Dco represent the classical gel point predicted by
the ideal tree theory. Assumption I claims the identity
D(inter) ≡ Dco, and consequently,

Dc = Dco +
f [Γ ]

g(f − g)
γ · (5)

In the following, we seek an explicit expression of equa-
tion (5).

2.1.1 R-Ag + R-Bf-g model

The general solution of [Γ ] has been yet unknown, but we
already know the asymptotic solution of the following:

[Γ ]γ=0 =
∞∑
j=1

ϕj [(g − 1)(f − g − 1)D2]j/2j, (6)

with ϕj denoting the relative frequency of cyclization of
j-chain to intermolecular reaction, equivalent to the ratio
of the respective rate constants. This important formula

was first found by Spouge [7] and later by the present au-
thor [8]. In the limit of γ → 0, excluded volume effects
should vanish rigorously, and polymer molecules become
ideal. Hence, on average conformation of long chains, ϕj
is expected to be Gaussian, in proportion to j−d/2(d: di-
mension).

Let us confine our discussion to the case d ≥ 3.
If we are in high concentration regime, we think
equation (6) is a good approximation of [Γ ] , so we write
it as a function Z of Dc

Z(Dc) = [Γ ] ∼=
∞∑
j=1

ϕj [(g − 1)(f − g − 1)D2
c ]
j/2j. (6’)

Note that equation (6) is physically meaningful only below
D ≤ Dco, since, beyond this point, the right-hand side sum
diverges. So, equation (6’) is a provisional equality being
prepared only for mathematical convenience in the course
of seeking the general solution of the gel point. With this
temporary equality in mind, we expand Z with respect to
Dc = Dco,

Z(Dc) ∼= Z(Dco) +

[
∂Z

∂Dc

]
Dc=Dco

(Dc −Dco)

+
1

2

[
∂2Z

∂D2
c

]
Dc=Dco

(Dc −Dco)
2 + · · ·

The basic idea of this expansion method is to justify the
equality (6’) which is exact and makes sense in the limit
of Dc → Dco, or γ → 0.

Here we note that Z(n) diverges in the higher order of
n ≥2, say, the

∑
j ϕj term of the second derivative Z(2).

So, we collect the leading two terms of Z(0) and Z(1); the
manipulation amounts to applying the mean value theo-
rem:

Z(Dc) = Z(Dco) + Z(1)(ξ)(Dc −Dco),

in which we are now making the approximation: Z(1)(ξ) ∼=
Z(1)(Dco). Then substituting into equation (5), one has
the solution

Dc = Dco

{
1− f

g(f−g)Dco

∑
j(1− 1/2j)ϕjγ

1− f
g(f−g)Dco

∑
j ϕjγ

}
, (7)

where we have made use of the critical relation, (g−1)(f−
g − 1)D2

co = 1. As γ → 0, equation (7) reduces to

Dc = Dco +
f
∑
j ϕj/2j

g(f − g)
γ · (8)

When we return to former definition of γ,

f

f − g
γ → γ,

namely, C = (M0 +N0)/V →M0/V , we now realize that
the previous treatment [8] by the authors was actually
the first approximation which took into account only the
smallest ring (see Appendix):

∞∑
j=1

ϕj [(g−1)(f−g−1)D2]j/2j → ϕ1(g−1)(f−g−1)D2/2.
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In the same way one gets for the

2.1.2 R-Af model

Dc = Dco

{
1− f−1

f

∑
j(1− 1/j)ϕjγ

1− f−1
f

∑
j ϕjγ

}
, (9)

and for the

2.1.3 Ag-R-Bf−g model

Dc = Dco

{
1− (1/gDco)

∑
j(1− 1/j)ϕj[gDco]

jωjγ

1− (1/gDco)
∑
j ϕj [gDco]jωjγ

}
,

ωj =
1

2

{
(1− α1/2)j + (1 + α1/2)j

}
;

α = (g − 1)(f − g − 1)/g(f − g),

(10)

respectively, where D represents the quantity of A FU’s
likewise.

Critical dilution γc

As the denominator decreases in equation (7), the Dc

value augments. Since the extent of reaction can not ex-
ceed unity, so there must exist a critical dilution γc, be-
yond which gelation can not occur. To find the quantity,
we put Dc = 1 to obtain the solution for the R-Ag+R-Bf-g

model:

γc =
1−Dco

f
g(f−g)

∑∞
j=1(1/Dco − 1 + 1/2j)ϕj

· (11)

Asymptote γasy

Mathematically, the denominator may decrease further to
approach the zero point where divergence of Dc occurs,
indicating the existence of an asymptote on the γ axis.
Equating the denominator of equation (7) with 0, the so-
lution becomes

γasy =
g(f − g)

f
∑
j ϕj

Dco, (12)

for the R-Ag+R-Bf−g case.

Dimensionality

It is worth mentioning the problem of dimensionality. It
has been known that, for a long chain of high concen-
tration, the end-to-end distance distribution can be well
approximated by the Gaussian form [9]

P (r)dϑ =

(
d

2π〈r2
j 〉

) d
2
{

1 +

(
−

d

2〈r2
j 〉
r2

)

+
1

2

(
−

d

2〈r2
j 〉
r2

)2

+ · · ·

}
dϑ,

which is valid for all dimensions. Cyclization probability
[6] is the probability that one end of a polymer chain enters
a volume ϑ around another end having a radius of a bond
length `. And it follows that

P(r ≤ `) =

∫ `

0

SdP (r)dr,

with Sd being the surface area of a d-dimensional sphere.
This quantity is related to ϕj according to

ϕj =
1

ϑ
P(r ≤ `)·

It is easy to show that because of the presence of the
exponential term {· · · }, the above integral is a rapidly
decreasing function of d. If we confine our discussion to a
long chain so that the inequality 〈r2

j 〉 � d is fulfilled, then

by the relation, dr2/2〈r2
j 〉
∼= 0, the cyclization probability

P(r ≤ `) reduces to

P(r ≤ `) ∼=

(
d

2π〈r2
j 〉

) d
2

ϑ,

resulting in the familiar expression of

ϕj =

(
d

2π〈r2
j 〉

) d
2

,

which decreases strongly with d, because of the inequality
〈r2
j 〉 � d.

Thus, in the regime of 〈r2
j 〉 � d, as d increases, cycliza-

tion tends to be more suppressed, so that the gel point
should approach to the classical theory [2,10]. We already
know that, with increasing d, space volume renders ex-
cluded volume effects negligible [11]a. As a result, at high
dimension, a branched molecule behaves as an ideal tree
with no rings and no excluded volume effects, in harmony
with the prediction by the percolation theory [11].

In the following section, we shall examine these the-
oretical results with experimentally observed data, and
show that the independence model is quite successful.

3 Examination of theory
with observations [12]

In his experiment on gelation of an adipic acid-
pentaerythritol mixture (R-A2+R-B4) diluted by tetram-
ethyleneglycol (Fig. 2), Wile [13] showed earlier that the
observed gel points are extrapolated exactly to the clas-
sical gel point when plotted as against the inverse con-
centration γ(= 1/C). With this discovery, the ideal tree
theory [2,10] has exceeded the framework of an abstract
mathematical model, establishing firmly the classic sta-
tus equal to the ideal gas to the real gas. In Figure 3 are
plotted the observed points (�) by Wile.

About 20 years later, Gordon and Scantlebury [14]
have reexamined the concentration dependence of the gel
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Fig. 2. Polymerization of the adipic acid-pentaerythritol
mixture (R-A2+R-B4).

Fig. 3. Dc vs. γ curve. (�): experimental points by Wile; (×):
experimental points by Gordon and Scantlebury; (◦): classical
critical point, Dco; (⊗): critical dilution, γc; Solid line (-): the-
oretical line by equation (7); Dashed line (· · · ): theoretical line
by equation (8).

points for the same mixture, arriving at the same conclu-
sion as in the Wile case. Their observed values are plotted
in Figure 3 using the symbol (×).

To superimpose the present theory on the experimen-
tal points, it is needed to estimate the sums

∑
j ϕj/2j

and
∑
j ϕj . Fortunately, it has been well theorized that

ϕj obeys the power law j−3/2 for sufficiently long chains
in concentrated solutions [2,9], and numerical calculation
shows

∑
j j
−3/2 ≈ 2

∑
j j
−5/2. Once there was a time

when much efforts have been devoted to measuring ϕj :
Jones and coworkers [15] pursued ring-chain equilibria of
linear aliphatic polyesters, measuring the equilibrium con-
stant Kx which is correlated with ϕx by the relation

Kx = ϕx/2x.

In Table 1 are summarized the Jones and coworkers’ ob-
servations, and for reference, an example of the aromatic
polyester, poly(ethylene terephthalate) [16]. We see that
the amounts of

∑
x ϕx are about two times larger than are

expected from the foregoing power law, which, however,
can be ascribed to less production of the smaller rings of
the size x = 1 and 2. We inspect this problem in more
detail in the following.

Table 1. Observed values for the relative frequency of cycliza-
tion in linear polyesters.

Polyester
∞∑
x=1

ϕx/2x
∞∑
x=1

ϕx

Jones and coworkersa

[O(CH2)3OCO(CH2)2CO] 0.100 0.830

[O(CH2)10OCO(CH2)4CO] 0.066 0.488

Cooper and Semlyenb

[O(CH2)2OCOC6H4.CO] (0.06) (0.75)

Calculated using the experimental values for small cyclics, and applying
the power law for larger cyclics; a: From reference [15]; b: From reference
[16].

Fig. 4. Newman projection for the dimer molecule in the adipic
acid-pentaerythritol mixture.

The polyesters shown in Table 1 have repeating units
consisting of 9 and 18 skeletal bonds, respectively, while
the adipic acid-pentaerithritol polymer has the repeating
unit of 11 bonds on the same kind of aliphatic backbone,
the intermediate length of the linear polyesters in Table 1.
Hence, Jones and coworkers’ experiment is a good measure
for the present calculation. Only the both polyesters differ
in one point: branched polymer has, in their own nature,
large substituents, to which, in the present case, the hy-
droxy methyl moieties, or the ester derivatives correspond
(Fig. 4).

Early in 1910’s, it has been perceived by European
organic chemists that some sort of substituents greatly
accelerate the rate of cyclization [17]. (Azelaonitrile con-
verts to cyclic ketone at about 30% yield according to the
Thorpe-Ziegler reaction, while α, α

′
- dimethylazelaonitrile

converts nearly exclusively to the corresponding cyclic
ketone under the same reaction condition). This type of
substituent effect has been called “gem-dimethyl effect” or
“Thorpe-Ingold effect” after Beesley, Ingold and Thorpe,
which has been comprehended as follows: In order for one
end FU on a chain molecule to encounter the other end
for cyclization, it is essential for the chain molecule to
take gauche conformation, requiring some steric energy,
on one hand. Since this steric effect appears most re-
markably together with transannular effects in 8- to 20-
membered ring formation, it is called at present “medium
size ring effect”, and we know that it depresses extremely
in many cases the production of the corresponding rings.



98 The European Physical Journal B

Fig. 5. Polymerization of the 1,3,5-Tri(carboxymethyl)
benzene-Decamethyleneglycol mixture (R-A2 + R-B3).

This is the primary source of the foregoing
∑
j ϕj anomaly

(Tab. 1). Given gem-substituents, on the other hand, the
energy of gauche conformation to trans conformation rel-
atively decreases, thus raising the relative frequency of
cyclization to intermolecular reaction.

On the basis of the above consideration, here we take
in the trial values∑

j

ϕj/2j = 0.32 (mol/l);
∑
j

ϕj = 4× 0.32,

which amounts to estimating about 6 times higher the
production of the cyclic 1-mer. This is seemingly consid-
erably large, but likely in the light of the gem-substituents
effect. Applying these values, it is found that the present
theory (7) reproduces, in excellent agreement, the Wile
observations, giving a critical dilution at γc = 0.448 and
an asymptote at γasy = 0.601 (Fig. 3). Noteworthy is the
fact that γc and γasy appear in very high concentration
regime of C � 1.0 mol/l. To confirm these findings, it is
essential for us to examine the present theory through a
branched polymer system without the gem- substituents
effect.

For this purpose, let us take up the 1,3,5-tri(carboxy-
methyl)benzene-decamethyleneglycol system (Fig. 5), the
concentration dependence of the gel points of which has
been reported by Ross-Murphy [18]. In this polymer sys-
tem we expect ordinary values of

∑
x ϕx/2x and

∑
x ϕx.

The experiment for the linear polyesters in Table 1 is again
a good measure. Taking an average of the observed values
by Jones and coworkers, we put:∑

x

ϕx/2x = 0.085;
∑
x

ϕx = 8× 0.085.

Substituting these values into equation (7), we see that
the theoretical curve (solid line) is in good agreement with
the experimental points (�) (Fig. 6), giving a critical di-
lution γc = 0.96, and an asymptote γasy = 1.248, greater
than in the adipic acid-pentaerythritol polymer system,
which arises from less production of rings in the 1,3,5-
tri(carboxymethyl)benzene-decamethyleneglycol polymer
system.

Linear relationship

The straight lines in Figures 3 and 6 show tangents at
γ = 0 in the Dc vs. γ curves. Bearing in mind the good

Fig. 6. Dc vs. γ curve. (�): experimental points by Ross-
Murphy; (◦): classical critical point, Dco; (⊗): critical dilution,
γc; Solid line (-): theoretical line by equation (7); Dashed line
(· · · ): theoretical line by equation (8).

agreement between the present model and the observed
points, we attribute the observed slope as follows:

∆↔
f
∑∞
j=1 ϕj/2j

g(f − g)
·

More exactly, one must take into account the change of
functionality ignored by the present model. For this pur-
pose, expand the left-hand side term of equation (4) as a
function of γ and neglect all correction terms to yield:

Dc = Dco +

{
ε+

f
∑
j ϕj/2j

g(f − g)

}
γ. (13)

ε signifies the first, differential coefficient for D(inter),
and hence represents a partial slope due to the change of
functionality. Now it becomes possible to make one-to-one
correspondence with the real slope ∆

∆ ≡ ε+
f
∑
j ϕj/2j

g(f − g)
, (14)

which is just what polymer chemists have quested for so
far, with the physical meaning having remained unknown.

4 Discussion

Through the present study, we have encountered three in-
finities: one is the divergence of the total ring concentra-
tion, the other is that of Z(n) in the Taylor series, and
another is that of Dc at γasy. All these are the manifesta-
tion of the essence of critical phenomena. Dodging these
infinities by means of mathematical operations, we have
acquired the special solutions (7, 9, 10) for the funda-
mental equality, based on the independence assumption.
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Table 2. Theoretical results by equation (7). The observed values are shown for comparison.

Adipic acid- 1,3,5-

Pentaerythritol Tri(carboxymethyl)benzene

polymer system -Decamethyleneglycol

polymer system∑
j

ϕj
2j

∑
j ϕj γc γasy

∑
j

ϕj
2j

∑
j ϕj γc γasy

Theoretical Model 0.32 4 × 0.32 0.45 0.60 0.085 8 × 0.085 0.96 1.25

Experiments:

Linear Polyester 0.066 0.488

(Jones and coworkers) – – – – ∼ 0.10 ∼ 0.83 – –

Branched Polyester

(Wile) – – (≈ 0.4)a – – – – –

a: Extrapolated to Dc = 1.

As we have seen in Figures 3 and 6, the theoretical re-
sult (7) is in accordance with the experimentally observed
points. More importantly, it predicts, equally to the pre-
ceding theory [8], the existence of (i) a critical dilution
and (ii) an asymptote.

The trial values of ϕx employed here, especially for
the adipic acid-pentaerithritol polymer system, might be
controversial (Tab. 2), but those are inside the permissible
range in the light of the gem-substituents effect, so we
think sufficiently realistic.

In spite of the striking success, the independence model
ignores an essential side, the change of functionality. Cer-
tainly, intermolecular reaction must be interfered by cyclic
bonds, so the change of functionality should occur, slightly
raising the Dc value. Thus, the independence model un-
derestimates the curvature of the Dc − γ lines, say, equa-
tion (13), and accordingly tends to overestimate the con-
centration of rings (Tab. 2). The good agreement of the
theoretical curves with the experimental data using the
reasonable ϕx values, on the other hand, gives evidence
that the change of functionality is not of primary impor-
tance in respect to the shift of the gel point. Probably, this
is because a gelling process is generally not in equilibrium
and cyclization is essentially secondary in bond formation.

Clearly there exists still another effect that the present
theory ignores, in close relation with the recent work by
Raphael, Gay and de Gennes [1]. The soft linkage among
rings, the catenation, may occur, which is expected to
work so as to shift the gel point downward, canceling out
to some extent the above functionality effect.

It is important to stress that the position of the criti-
cal dilution γc is very susceptible to the quantity, ϕx. So,
there is a hope in future that if we can devise some exper-
imental technique to measure γc, then combining with the
determination of the tangent at Dco, we would be able to
gain valuable informations about occurrence of cyclization
in branched polymer solutions.

In order to look at the present result from another
point of view, equation (7) is plotted as a function of C
(Fig. 7); experimental points are again Wile’s and Gordon-

Fig. 7. Dc vs. C curve. (�): experimental points by Wile; (×):
experimental points by Gordon and Scantlebury; (⊗): critical
dilution, γc; Solid line (-): theoretical line by equation (7).

Scantlebury’s ones. The theoretical line is comparable to
the site-bond diagram [11] in the percolation theory.

5 Concluding remarks

The problem of finding the gel point Dc in real polymer
solutions has reduced to the problem of calculating the
total ring concentration and the change of functionality
for intermolecular reaction at the gel point.

We have solved a special case of this problem based on
the independence assumption between intermolecular re-
action and cyclization: With the help of the asymptotic
equality (6’) of the total ring concentration and mak-
ing use of the Taylor series expansion with respect to
Dc = Dco, we have obtained the closed expression (7)
of the gel point as a function of the inverse concentration
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γ. Equally to the preceding derivation, the present theory
makes prediction of the existence of a critical dilution and
an asymptote.

The theoretical results have been examined in the light
of the experiments in the branched polymer systems with
and without the gem-substituents effect, showing good
agreement with the observations. Taking into account the
good predictability of the independence model, and com-
paring with the tangent (13), we attribute the observed
slope ∆ as follows:

∆ ≥
f
∑∞
j=1 ϕ/2j

g(f − g)
·

Appendix

In the previous work [8b], we have derived the tangent of
the form:

Dc = Dco +
c1D

2
co

2g
(1/C). (A.1)

Using the present definition of 1/C, it follows that

Dc = Dco +
f

g(f − g)
(c1/2)D2

coγ (A.2)

We now compare equation (A2) with equation (8) to find
the correspondence:

c1

2
D2
co ↔

∑
j

ϕj [(g − 1)(f − g − 1)D2
co]

j/2j,

whence we can attribute

c1 = ϕ1(g − 1)(f − g − 1). (A.3)

In reference [8b], we have employed c1 ≈ 4.7. With g = 2
and f−g = 4, it follows from equation (A.3) that ϕ1 ≈ 1.6,
while, in the present case,

∑
j ϕj ≈ 1.3 (see Tab. 2). These

are of the same order, and consistent with each other.
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this series of investigation. I also thank Dr. T. Kawamata (Keio
University) and Dr. T. Sekiguchi for their helpful discussion
and great encouragement.
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